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The state of the art of harmonic balance finite element method (HBFEM) is to use harmonic balance theories and finite element 

method based computational electromagnetics (CEMs) technology to analyse or investigate nonlinear electromagnetic fields with 

harmonic problems in electrical and electronic engineering. HBFEM can directly solve the steady-state response of the electromagnetic 

field in the multi-frequency domain. The method is often considerably more efficient and accurate in capturing coupled nonlinear 

effects than the traditional FEM time-domain approach when the field exhibits widely separated harmonics in the frequency spectrum 

domain and mild nonlinear behavior. This paper presents an overview of HBFEM and its application in solving various harmonic 

problems related to high frequency transformers, DC biased transformers, and geomagnetic induced currents on transformers.  

 

Index Terms— Computational electromagnetics (CEMs), Harmonic balance finite element method (HBFEM), Multi-frequency 

domain (MFD).  

I. INTRODUCTION 

HE HARMONIC balance technique was first introduced to 

analyse low frequency electromagnetic (EM) field 

problems in the late 1980s [1]. It was followed by the 

contributions of Lu in various applications [2-3], and other 

researchers [4-6]. Harmonic balance techniques were 

combined with the finite element method (FEM) to accurately 

solve the problems arising from time-periodic steady-state 

nonlinear magnetic fields. The method can be used for weak 

and strong nonlinear time periodic EM fields (including DC 

biased transformers and geomagnetic induced currents on 

transformer problems), as well as harmonic problems in 

renewable energy systems with distributed energy resources. 

II. THE BASIC CONCEPT OF HBFEM 

The harmonic balance FEM (HBFEM) method uses a linear 

combination of sinusoids to build the solution, and represents 

waveforms using the sinusoid; coefficients combined with the 

finite element method. It can directly solve the steady-state 

response of the EM field in the multi-frequency domain. Thus, 

the method is often considerably more efficient and accurate 

in capturing coupled nonlinear effects than the traditional 

FEM time-domain approach when the field exhibits widely 

separated harmonics in the frequency spectrum domain, e.g. 

Pulse Width Modulation (PWM) case. The harmonic balance 

FEM consists of approximating the time periodic solution 

(magnetic potentials, currents, voltages, etc.) with a truncated 

Fourier series. Besides the frequency components of the 

excitation (e.g. applied voltages), the solution contains 

harmonics due to nonlinearity (magnetic saturation and 

nonlinear lumped electrical components) and movement (e.g. 

rotation). The HBFEM leads to a very large, single system of 

algebraic equations. Dependent on the problem at hand, it may 

be much more efficient than the time domain approach (time 

stepping). Indeed, the latter inevitably requires stepping 

through the transient phenomenon before reaching the quasi-

steady-state. The global HBFEM system of algebraic 

equations is derived in an original way. The Galerkin approach 
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is applied to both the space and time discretization.The time 

harmonic basis functions are used for approximating the 

periodic time variation as well as for weighing the time 

domain equations in the fundamental period. Magnetic 

saturation and nonlinear electrical circuit coupling are thus 

easily accounted for by means of the Newton-Raphson method. 

Rotation in FEM models of rotating machines, using the 

T 



moving boundary technique, can be considered as well. The 

HBFEM has been validated by applying it to several test cases 

(transformer feeding a rectifier bridge, various synchronous 

and asynchronous machines, DC biased transformer, etc.). The 

harmonic waveforms of the magnetic field, currents and 

voltages etc., are shown to converge well compared to those 

obtained with time stepping as the spectrum of the HBFEM 

analysis is extended. The comparison results between HBFEM 

and other numerical methods are illustrated in Table I. 

III. HARMONIC BALANCE FEM IN EM FIELDS 

Harmonic balance can be applied to EM field analysis as 

the fields that contain the harmonics also satisfy Maxwell's 

equations. The harmonics generated in EM fields can be 

described in the following three ways: 

 When a linear EM object is excited by sources which 

contain the harmonics, it will exhibit the harmonic 

field.  

 When a nonlinear EM object is excited by a sinusoi-

dal signal, it will exhibit harmonic fields. 

 When both linear and nonlinear EM objects are ex-

cited by the sources which contain the harmonics, the 

result is a complex harmonic field. 

One of the most obvious properties of a nonlinear system is 

the generation of harmonics. For example, we use the 

following equations to describe the quasi-static EM fields. 

These can be defined as follows: 

A. Nonlinear Electromagnetic field 

Nonlinear Magnetic field: 

0)/(  sJtAA        (1)   

Nonlinear electric field: 

  0)/(  tEE              (2)  

where the electric field E, magnetic vector potential A, scalar 

potential  on the arbitrary node i in the discretised system, 

the electrical conductivity , dielectric permittivity ε and the 

source current density Js can be respectively expressed as: 
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where the vector A0, E0, J0 and scalar 0 are the DC 

components respectively, and ks and kc represent the sin and 

cos components. In practical applications, harmonic k is not 

infinite. Only a finite number is required in the real system. 

B. Nonlinear Medium Description 

Nonlinear phenomena in EM fields are caused by nonlinear 

materials. The nonlinear materials are normally field strength 

dependent. Therefore, when the time-periodic quasi-static EM 

field is applied to the nonlinear material, the electromagnetic 

properties of the material will be functions of the EM field. 

They will also be time dependent.  

The magnetic reluctivity  corresponding to B(t) can be 

expressed as:  
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The electrical conductivity  related E(t) can be expressed 

as : 
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C. Boundary Conditions 

Since the trigonometric functions are orthogonal functions, 

the harmonic potential Pk (degrees of freedom) on the 

boundary satisfy Dirichlet and Neumann boundary conditions. 

The frequency-domain representation, or spectrum on each 

boundary node, can then be expressed as follows: 

Dirichlet boundary condition: 
T
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Neumann boundary condition: 
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where the k is the harmonic number, potential Pks  and Pkc 

are the sum of the harmonics on each boundary node i. 

D. The Generalized HBFEM 

The system matrix equation for current source excitation can 

then be written in a compact form: 

[ ]{ } [ ]{ } { }S A M A K  0        (11) 

where [S] is the system matrix and [M] is the harmonic related 

matrix, and {K} is related to excitation source. All harmonic 

components of magnetic vector potential A can be directly 

obtained by solving this system matrix equation.   

The detailed discussion and new application in DC biased 

transformers and geomagnetic induced currents on transformer 

problems will be presented in the full paper.  
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